《基础化学实验 B4》实验课程教学大纲

一、课程概况

课程代码		CH070084B	课程性质	必修
课程名称		基础化学实验 B4	学时/学分	30/1.5
英文名称		Basic Chemistry Experiments B4	考核方式	考查
先修课程		基础化学实验 B1/B2/B3	大纲执笔人	曹田、陈艳
适用专业		化学工程与工艺	大纲审核人	王颖
实验课程指	1年号	刘瑾等主编,《大学化学基础实验	金》,化学工业出版	反社,2018

课程简介:

《基础化学实验 B4》是我院化学实验中心独立开设的化学实验课程之一,基础化学实验 B4 是化学工程与工艺专业必修的基础课程。是由传统的物理化学实验和有机化学实验整合、优化而成。彻底打破原来各自为政、独立进行的状况,实现了综合性和设计性改造。使实验从以知识传授为中心,转向以综合素质和创新能力培养为中心。即在加强基本操作、基本技能训练的基础上,注意多种模式、多层次的综合、注重实验的应用性。加强了实验基础理论的学习、基本操作的训练、强化了设计和综合实验、引入了一些新概念、新方法和绿色化学概念,对实验教学内容进行了全面地改革。

通过基础化学实验的锻炼,要培养学生的创新精神,锻炼同学之间的团队合作精神,打造学生走上社会后服务社会的工匠精神。

课程目标(Course Objectives, CO) (CO1) 规范地掌握化学实验的基础理论、基本操 (CO2) 具备细致观察进而分析判断实验现象的能 作与基本技能。 力, 能正确诚实记录实验现象与结果。 (CO3) 在分析实验结果的基础上,能正确地运用 化学语言进行科学表达,独立撰写实验报告。 ☑PM1.讲解 9 学时 20 % ☑PM2.自主学习 9 学时 20% ☑PM3.体验学习 27 学时 60 % 教学方式 \square PM4. □PM6. (Pedagogical \square PM5 学时 % Methods, PM) \square PM7. 学时 \square PM8 □EM1.课堂测试 □EM 2.期中考试 □EM3.期末考试 % 考核方式 □EM4.作业撰写 % ☑EM5.实验分析报告 50% □EM6.期末报告 % (Evaluation □EM7.课堂演讲 □EM8.论文撰述 ☑EM9.出勤率 10% Methods, EM) □EM10.口试 □EM11.设计报告 ☑EM12.预习报告 20% ☑EM13 实验过程表现 20%

二、教学内容及安排

实验项目编号	实验项目名 称	实 验 教 学 主 要 内 容	实验项目学时	课程目标	教学方式	考核方式	实验要求	实验 类别	实验 类型	是否为网 络实验教 学项目
C H0 70 08 4B 01	实验一: 偶极 矩测定	1. 测定正丁醇的偶极矩, 了解偶极矩 与分子电性质的关系 2. 掌握溶液法测定偶极矩的原理和 方法	4	CO1 CO2 CO3	PM1 PM2 PM3	EM5 EM9 EM12 EM13	必修	基础	综合	否
C H0 70 08 4B 02	实验二:电池 电动势测定 及应用	1. 通过实验加深对可逆电池,可逆电极概念的理解 2. 掌握对消法测定电池电动势的原理及电位差计的使用方法 3. 通过测量电池 Ag AgCl(s) Cl ⁻ AgNO ₃ Ag 的电动势求 AgCl 的溶度积 K _{SP} 4. 通过 Ag AgCl(s) Cl ⁻	4	CO1 CO2 CO3	PM1 PM2 PM3	EM5 EM9 EM12 EM13	必修	基础	综合	否
C H0 70 08 4B 03	实验三:最大 气泡法测溶 液表面张力	1. 掌握最大气泡压力法测定溶液表面张力的原理和技术 2. 测定正丁醇水溶液的γ-c 曲线求溶质的吸附量和正丁醇分子的横截面积(S ₀)	4	CO1 CO2 CO3	PM1 PM2 PM3	EM5 EM9 EM12 EM13	必修	基础	综合	否
C H0 70 08 4B 04	实验四: 离子迁移数测定	 掌握希托夫法测离子迁移数的基本原理。 了解离子迁移数测定的意义。 学习库仑计的使用原理和使用方法。 	4	CO1 CO2 CO3	PM1 PM2 PM3	EM5 EM9 EM12 EM13	必修	基础	综合	否
C H0 70 08 4B	实验五:乙醇 一水溶液中 各组分的偏	1. 掌握用比重瓶测定溶液密度的方法 2. 测定乙醇一水溶液中各组分的偏	4	CO1 CO2 CO3	PM1 PM2 PM3	EM5 EM9 EM12	选修	基础	验证	否

05	摩尔体积测	摩尔体积				EM13				
	定									
C H0 70 08 4B 06	实验六: 双液系相图绘制	 掌握沸点测定仪组装及使用方法和阿贝折射仪使用方法 绘制二组分溶液体系的相图,对相图进行分析 	6	CO1 CO2 CO3	PM1 PM2 PM3	EM5 EM9 EM12 EM13	选修	基础	综合	否
C H0 70 08 4B 07	实验七:乙酰 乙酸乙酯的 制备	通过酯缩合反应制备乙酰乙酸乙酯	8	CO1 CO2 CO3	PM1 PM2 PM3	EM5 EM9 EM12 EM13	必修	基础	综合	否
C H0 70 08 4B 4B 08	实验八: 苯甲醇和苯甲酸的制备	由苯甲醛制备苯甲醇和苯甲酸	6	CO1 CO2 CO3	PM1 PM2 PM3	EM5 EM9 EM12 EM13	必修	基础	综合	否
C H0 70 08 4B 09	实验九:核磁 共振实验	1、了解核磁共振测试原理及应用情况; 2、了解核磁共振仪构造及测试操作基本方法; 3、学会核磁谱图处理软件 NUTS2003 的使用; 4、掌握 H 谱解析方法并能够分析简单有机化合物结构。	5	CO1 CO2 CO3	PM1 PM2 PM3	EM5 EM9 EM12 EM13	必修	专业基础	综合性	否
注	实验项目编号:为课程代码+2位序号(不可重复);独立开设实验的实验项目编号在尾后再加"*"实验要求:必修、选修、其它。									
:										

三、实验主要仪器设备(可根据需要自行添加行)

序号	仪器名称	型号	规格	归属实验室
1	电容仪	DZJC		化学实验中心
2	数字电位差综合测试仪	SDC-II		化学实验中心
3	表面张力仪	DP-AW		化学实验中心
4	离子迁移数测定仪	LQY		化学实验中心
5	磁力搅拌电热套	SHT	500ml	化学实验中心
6	熔点仪	X-4		化学实验中心
7	电热鼓风干燥箱	GZX-9076MBE		化学实验中心
8	沸点测定仪	FDY		化学实验中心

四、实验指导书具体要求

(限 300-600 字,需对实验课程目标达成有具体要求。)(有实验的课程必须有实验指导书,实验指导书应与实验课程教学大纲相配套。)

本课程的基本内容介绍,通过学习学生需要掌握的基本知识。各实验项目必须标明实验学时、实验类型、实验要求,明确各实验目的,注意强调"通过本实验的学习,使学生了解或掌握什么知识,训练或培养什么技能,为今后继续哪方面的学习奠定基础"。 实验内容具体,注意直接或间接指明本实验涉及了哪几个具体的知识点。明确实验原理、方法和手段、实验条件、实验步骤以及思考题和相关注意事项。

五、课程成绩评定

(一) 内容分解(以下内容可以根据实际情况进行增删调整)

序号	观测点(权 重)	细化的观测点	权 重	得分	分项 得分	
1	出勤 (0.1)	不得迟到、早退	1.0	10	10	
2	实验预习 (0.2)	课堂提问对实验目的,内容及原理的熟悉程度, 查看预习报告	1.0	20	20	
		实验态度及参与程度		10		
3	实验实施 (0.2)		操作技能	0.3	6	20
		协作精神	0.2	4		
	实验报告	实验报告撰写质量	0.4	20		
4	(0.5)	☆水粉提放用五八七式++渗过和百m五次及的子		30	50	
合计:						

(二)评分标准(以下内容可以根据实际情况进行增删调整)

序号	观测点 (权重)	细化的观测 点	优秀标准	良好标准	合格标准	不合格标准
1	出勤 (0.1)	出勤	按时到达指定 实验室上课			迟到或者旷 课
2	实验预 习 (0.2)	课堂提问对 实验目的,内 容及原理的 熟悉程度	问题回答完整 准确,对实验内 目的和实验内 容有明确了解 和掌握,实验 方案有创新	基本准确回答 对实验目的和实验目的和明确 了解和了解和了解和了解和了解,掌握了的	对实验目的 和实验内容 基本了解,不 能很好的回 答预习问题	几行习目内解答到的容未间的容未间题验验了回
3	实验实 施 (0.2)	实验态度及 参与程度	按时参加实验,具有较强的主观能动性,勤于提问,积极思考	按时参加实验,具有一定的主观能动性,勤于提问	按时参加实验,需在指导和督促下开展基本实验	实验迟到, 被动参与实 验,实社过 程不深入仔 细,实验大

						部分时间做 与实验内容 无关的事情
		操作技能	实验过程熟练,操作规范,动手能力强, 动手能力强, 方案实施正确 合理,进展顺利	实验过程较熟 练,能完成基 本操作,方案 实施顺利	可在指导下 完成实解决方 作,能解决方 案实施过程 中出现的 题	未完成基本实验操作
		协作精神	推进团队计划 实施,主动组 号分配任务, 并能协调同组 成员	推进团队计划 实施,完成分 配任务,能与 小组成员配合	实验实施困 难与问题较 多,团队协作 体现不足	被动参与实验吗,未完成团队协作所要求的内容
4	实验报 告 (0.5)	实验报告撰写质量	报告撰写及实规等 医人名	报告撰整本 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等	实验报告结 构完整,规范 化不足,完成 质量一般	实完据果误关实规告无数结错无、和 数结错无、和

六、参考资料

- 1) 刘瑾,基础化学实验,安徽科学技术出版社,2008
- 2) 兰州大学,有机化学实验,高等教育出版社,2002

七、专业个性化需求补充说明

无